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Abstract

Coq’s consistency — and the consistency of constructive type theories in general — crucially depends on all recursive functions being
terminating. Technically, in Coq, this is ensured by a so-called guard checker, which is part of Coq’s kernel and ensures that fixpoints
defined on inductive types are structurally recursive. Coq’s guard checker has been first implemented in the 1990s by Christine Paulin-
Mohring, but was subsequently extended, adapted, and fixed by several contributors. As a result, there is no exact, abstract specification
of it, meaning for instance that formal proofs about it are out of reach. We propose a talk on our ongoing work-in-progress project to
synthesise a specification of Coq’s guard checker as a guard condition predicate defined in Coq itself on top of the MetaCoq project. We
hope that our project will benefit the users of Coq by providing an accurate and transparent description, as well as lay the foundations
for future improvements or even mechanised consistency proofs of Cogq.

In Coq, one can define inductive types which have parameters, be indexed, mutual, or nested. Common examples
are natural numbers, lists (which have a parameter), vectors (which have indices), even/odd predicates (which are
mutual), the accessibility predicate (which has nesting via a function type), and rose trees (which have nesting via
inductive types). One can then define so-called fixpoints by structural recursion on elements of these inductive
types. As an example here is a definition of the recursor on natural numbers as a fixpoint:

Fixpoint nat_rec (P : nat -> Set) (p8 : P 0) (ps : forall (m: nat), P m -> P (S m))
(n : nat) {struct n}: P n :=
match n with
| 0 => po
| Sm=>psm(nat_rec P p8 ps m)
end.

All of the mentioned features like mutuality and nesting introduce mostly orthogonal complexity in the definition
of Coq’s guard checker, which is defined in the kernel/inductive.ml file of Coq’s code in about 1000 lines of OCaml
code. To illustrate how a guard checker is crucial for consistency, one can look at the following two non-terminating
fixpoints

Unset Guard Checking.
Fixpoint boom (x : nat) {struct x} : False := boom x.

Fixpoint inf (n : nat) {struct n} :=
match n with
| 0=>0
[ S_ =5 (inf n)
end.

They allow proofs of False as boom 8 and exploiting the contradictory property of inf 1 = S (inf 1).

History of the guard condition

In the 1990s, Frank Pfenning and Christine Paulin-Mohring introduced inductive types in the calculus of construc-
tions [1] along with a guard condition for fixpoints [2]. The first version of Coq’s Guard Checker was implemented
in Coq v5.10.2 by Paulin-Mohring in 1994 [3]. In 2012, Pierre Boutillier relaxed the guard checker via $-¢ commu-
tative cuts [4]. In 2014, Maxime Dénés restricted the guard checker to forbid an unwanted proof that propositional
extensionality does not hold in Coq [5]. In 2022, Hugo Herbelin restricted the guard checker to ensure strong
normalisation rather than just weak normalisation, which is a behaviour that seems to be more in line with the
intuition of users [6]. In 2024, Herbelin introduced a relaxation, allowing simpler implementation of nested recur-
sive functions [7]. Furthermore, changes to the guard condition keep being proposed, see e.g. [8] and [9].



MetaCoq: a formalisation of Coq in Coq

Two central parts of the MetaCoq project [10] are a formalisation of Coq’s type theory in Coq [11] and, on top
of that, verified implementations of a type checker [12] and a verified extraction function to OCaml [13]. The for-
malisation of type-theory faithfully captures typing rules of Coq in an inductive predicate, and is parameterised
in a guard checker function which is requried to fulfil some basic properties such as being stable under reduction
and substitution. Based on this formalisation, crucial properties such as subject reduction (types are preserved by
reduction) and canonicity (normal forms of inductive types start with a constructor) are proved [12].

The verified type checker axiomatically assumes that reduction in the system is strongly normalising. The strong
normalisation assumption can also be used to prove consistency, because any proof of False would have a normal
form using strong normalisation, which would have the same type using subject reduction, and would start with
a constructor of the inductive type False using canonicity — which is a contradiction, because False has no con-
structors.

An implementation of Coq’s Guard Checker in Coq
In the talk, we will report on a the current state of the project: a full and faithful implementation of Coq’s guard
checker in Coq using the MetaCoq project, available on https://github.com/inria-cambium/m1-tan/tree/v1.0.0. We

will also explain the workings of the guard checker via the data structures it uses and present its different dimen-
sions of complexity, due to its many contributions by different authors.

Towards a verified guard checker

As future work, the first step to verifying the guard checker would be synthesising a guard condition predicate from
the current OCaml implementation of the guard checker. This predicate will work similarly to the typing predicate
in MetaCoq, i.e. talk about the syntax of Coq as specified in MetaCoq. This specification can be an inductive pred-
icate, meaning it does not have to be obviosly decidable.

As a second step, a guard checker function deciding the guard condition predicate should be defined. This function
will have to use MetaCoq’s verified implementation of reduction, meaning it will have to rely on the strong nor-
malisation axiom. Technically, a substantial challenge will lie in proving that the definition of this guard checker
function, defined in Coq and working on syntax as specified by MetaCogq, is terminating. That this function indeed
correctly computes the guard condition predicate can either be immediately proved by using dependent types and
a correct-by-construction guard checker function, or in a separate additional step. Note that technically, proving
the soundness of the function suffices, i.e. that whenever the function accepts a term, the guard condition predicate

holds.

Towards normalisation proofs

Having a formal description of the guard condition now allows relative normalisation proofs of Coq’s type theory
in Coq. Namely, it then is feasible to define a simpler, more natural, and more modular variant of guard condition
and show that Coq’s type theory with the current implementation of the guard condition can be interpreted in this
simpler theory. This would result in a relative normalisation proof, meaning that Coq’s type theory is normalising
(and thus consistent) if the simpler system is normalising. In particular, this means that the trust in Coq’s consis-
tency could be moved to trusting that such a simpler theory is terminating. In the long term future, it then even
could be possible to prove termination of Coq’s type theory (for a restricted number of universes to get around
Godel incompleteness issues) by reducing it in many steps to an extension of the currently also ongoing formali-
sation of MLTT in Coq [14].

Related Work

Termination checking in Agda is done semantically via sized types: a special, implicit type used by the type checker
to determine if the recursion done on a strictly smaller argument [15, 16]. Lean, on the other hand, only has re-
cursors (or eliminators) in its type theory, thus user-written recursive functions are represented in the kernel by
recursors [17, 18].


https://github.com/inria-cambium/m1-tan/tree/v1.0.0
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