Towards Formalizing the Guard Condition of Coq

Yee-Jian Tan

MPRI M1 Internship Project Advisor: Yannick Forster, Cambium team

- 1. Consistency of a Type Theory
- 2. Coq's Guard Checker
- 3. Towards a Formalization

Consistency of a Type Theory

Consistency of a Type Theory

- 1. Strong normalization: reduction terminates and every term has a unique normal form.
- 2. Subject reduction: reduction preserves typing.
- 3. Canonicity: normal form of terms in the empty context must begin with a constructor.

Together, we can prove consistency:

Proof of Consistency

Any term of the Empty type has a normal form (1) of the same type (2), which, in the empty context, must begin with a constructor (3). But the type False has no constructor.

We want to show Coq's consistency with the same scheme.

Inductive types in Coq:

```
Inductive nat :=
       0 : nat
 2
      S: nat \rightarrow nat.
 3
 4
   Inductive list (A : Set) :=
 5
        nil : list A
 6
        cons : A \rightarrow \text{list } A \rightarrow \text{list } A.
 8
   Inductive vec (A : Set) : nat \rightarrow Set :=
 9
10
        vnil
                : vec A O
        vcons (n : nat) : A \rightarrow vec A n \rightarrow vec A (S n).
11
```

Which are defined using constructors.

More examples:

```
13 Inductive Acc (A : Set) (R : A \rightarrow A \rightarrow Prop) (a : A) : Prop :=
     | acc : (forall b : A, (R b a \rightarrow Acc A R b)) \rightarrow Acc A R a.
14
15
16 Inductive rtree :=
    node : list rtree (* nested *) \rightarrow rtree.
17
18
19 Inductive rtree' :=
20
    node' : list rtree \rightarrow rtree'
21 with list_rtree :=
    rtree_nil : list_rtree
22
      | rtree cons : rtree' \rightarrow list rtree \rightarrow list rtree.
23
```

We can also have nested and/or mutual inductive types.

The dual of a constructor is an eliminator, whose type is known as the induction principle.

```
25 About nat rec.
26 (** nat_rec : forall P : nat \rightarrow Set,
   P \ O \rightarrow (forall \ n : nat, \ P \ n \rightarrow P \ (S \ n)) \rightarrow forall \ n : nat, \ P \ n
27
28 *)
   About list rec.
29
    (** list_rec : forall (A : Set) (P : list A \rightarrow Set),
30
   P (nil A) →
31
32
   (forall (a : A) (1 : list A), P 1 \rightarrow P (cons A a 1)) \rightarrow
    forall 1 : list A, P 1
33
34 *)
35
   About vec rec.
   (** vec_rec: forall (A : Set) (P : forall n : nat, vec A n \rightarrow Set),
36
37
    P O (vnil A) →
   (forall (n : nat) (a : A) (v : vec A n), P n v \rightarrow P (S n) (vcons A n a v)) \rightarrow
38
39 forall (n : nat) (v : vec A n), P n v
40 *)
```

Coq was designed to extract to OCaml, so match operators are used instead of eliminators.

Eliminators can be defined using match and fixpoints.

```
25 About nat_rec.

26 (** nat_rec : forall P : nat \rightarrow Set,

27 P O \rightarrow (forall n : nat, P n \rightarrow P (S n)) \rightarrow forall n : nat, P n

28 *)
```

```
43 Fixpoint nat_rec (P : nat \rightarrow Set)

44 (p0 : P 0) (ps : forall (m: nat), P m \rightarrow P (S m)) (n : nat) : P n :=

45 match n with

46 | 0 \Rightarrow p0

47 | S m \Rightarrow ps m (nat_rec P p0 ps m)

48 end.

49 End M.
```

For example, the plus operation on \mathbb{N} in both styles:

```
50 Definition plus_elim (a b : nat) := nat_rec (fun _ \Rightarrow nat) b (fun _ p \Rightarrow S p) a.
51
52 Fixpoint plus (a b : nat) {struct a} := match a with 0 \Rightarrow b | S a' \Rightarrow S (plus a' b) end.
```

which are equivalent.

```
54 Theorem plus_equiv : forall (a b : nat), plus a b = plus_elim a b.
55 Proof.
56 induction a as [|a Ha].
57 - simpl. reflexivity.
58 - cbn. intro b. f_equal. exact (Ha b).
59 Qed.
```

```
62 Fixpoint plus' (a b : nat) {struct a} := match a with

63 | 0 \Rightarrow b

64 | S_- \Rightarrow S (plus' a b)

65 end.
```

```
62 Fixpoint plus' (a b : nat) {struct a} := match a with

63 | 0 \Rightarrow b

64 | S \_ \Rightarrow S (plus' a b)

65 end.
```

```
77 Definition one := plus' (S 0) 0.
78 Theorem one_equals_two : one = S one.
79 Proof. unfold one at 1. rewrite alt. rewrite ← alt. unfold id. apply f_equal. symmetry. reflexivity. Qed.
80
81 Theorem n_not_succ_n: forall (n : nat), n = S n → False.
82 Proof. induction n as [|n Hn]; intro H; now inversion H. Qed.
83
84 Goal False. exact (n_not_succ_n one one_equals_two). Qed.
```

```
62 Fixpoint plus' (a b : nat) {struct a} := match a with
63 | 0 ⇒ b
64 | S _ ⇒ S (plus' a b)
65 end.
```

```
77 Definition one := plus' (S 0) 0.
78 Theorem one_equals_two : one = S one.
79 Proof. unfold one at 1. rewrite alt. rewrite ← alt. unfold id. apply f_equal. symmetry. reflexivity. Qed.
80
81 Theorem n_not_succ_n: forall (n : nat), n = S n → False.
82 Proof. induction n as [|n Hn]; intro H; now inversion H. Qed.
83
84 Goal False. exact (n_not_succ_n one one_equals_two). Qed.
```

```
62 Fixpoint plus' (a b : nat) {struct a} := match a with

63 | 0 \Rightarrow b

64 | S _ \Rightarrow S (plus' a b)

65 end.
```

```
77 Definition one := plus' (S 0) 0.
78 Theorem one_equals_two : one = S one.
79 Proof. unfold one at 1. rewrite alt. rewrite ← alt. unfold id. apply f_equal. symmetry. reflexivity. Qed.
80
81 Theorem n_not_succ_n: forall (n : nat), n = S n → False.
82 Proof. induction n as [|n Hn]; intro H; now inversion H. Qed.
83
84 Goal False. exact (n_not_succ_n one one_equals_two). Qed.
```

```
62 Fixpoint plus' (a b : nat) {struct a} := match a with

63 | 0 \Rightarrow b

64 | S_- \Rightarrow S (plus' a b)

65 end.
```

```
77 Definition one := plus' (S 0) 0.
78 Theorem one_equals_two : one = S one.
79 Proof. unfold one at 1. rewrite alt. rewrite ← alt. unfold id. apply f_equal. symmetry. reflexivity. Qed.
80
81 Theorem n_not_succ_n: forall (n : nat), n = S n → False.
82 Proof. induction n as [|n Hn]; intro H; now inversion H. Qed.
83
84 Goal False. exact (n_not_succ_n one one_equals_two). Qed.
```

... and consistency!

Coq's Guard Checker

- sufficient condition for termination
- $\cdot\,$ based on a syntactical check for structural recursion
- the condition it imposes is known as the **guard condition**.

In short: it checks that the recursive argument is <u>structurally smaller</u>.

52 Fixpoint plus (a b : nat) {struct a} := match a with $0 \Rightarrow b | S a' \Rightarrow S$ (plus a' b) end.

Other guard conditions

- well-foundedness in Program Fixpoint
- sized types in Agda
- type-based conditions

An oversimplification of how the guardchecker works:

```
Fixpoint f (n : nat) := match n with
91
92
      (* strict subterms of n : [] *)
93
      | 0 \Rightarrow 0
      S n1 \Rightarrow (* \text{ strict subterms of } n : [n1] *)
94
     match n1 with (* strict subterms of n : [n1, n2] *)
95
96
      | 0 ⇒ n1
          S n2 \Rightarrow ((fun x \Rightarrow x) f) n1
97
98
      end
99 end.
```

- Internally, the subterms are deduced from a (regular) tree representing nat.
- In real life: mutual, nested inductive types (and fixpoints) that complicate matter...

Of course not! Many things happened since the guard checker's birth.

- remains crucial for the correctness of Coq
- at the heart of multiple consistency-threatening bugs.
- bugfixes and optimizations \rightarrow about 1k LOC of OCaml (2k including data structures)

Many others have contributed to the guard checker, sorry if I missed your names!

1990s

- Eduardo Gimenez : "Codifying Recursive Definitions with Recursive Schemes".
- Christine Paulin-Mohring : Inductive types in Coq.

2000s

• Bruno Barras : first commit of the Guard Checker in Coq by Bruno Barras.

2010s

- Pierre Boutiller : relaxation of the guard condition via β ι cuts
- Maxime Dénès : Propositional Extensionality bug + fixes

2020s

• Hugo Herbelin : restored strong normalization, extracted uniform parameters, ...

Towards a Formalization

User POV

Fighting the guard checker is common in formalization projects. We need an accurate understanding of it.

Theoretical POV

We want to know that Coq's metatheory is consistent.

Immediate Goals

- Understand the guard checker and produce a specification/paper/document
- Lay the groundwork for formalization: we do it in MetaCoq.

Introduction to MetaCoq

Distinction must be made between

Guard Condition

A predicate on whether a term is guarded.

```
Inductive Guard \Sigma \Gamma: term \rightarrow Prop :=
| Guard_tFix (f : tFix) : "f is structurally recursive" \rightarrow Guard \Sigma \Gamma f
| ... end.
```

Guard Checker

Guard Checker: a function that computes/decides the guardedness of a term.

```
Definition guard \Gamma \Sigma t A \rightarrow (\Gamma ; \Sigma \vdash t : A) \rightarrow Bool.
Theorem guard_ok := guard t = true iff Guard t.
```

- 3 ingredients:
- 1. Strong normalization -
- 2. Subject reduction -
- 3. Canonicity -

3 ingredients:

- 1. Strong normalization postulated. Requires a notion of guardedness.
- 2. Subject reduction -
- 3. Canonicity -

3 ingredients:

- 1. Strong normalization postulated. Requires a notion of guardedness.
- 2. Subject reduction proved, assuming the guard checker exists.
- 3. Canonicity -

3 ingredients:

- 1. Strong normalization postulated. Requires a notion of guardedness.
- 2. Subject reduction proved, assuming the guard checker exists.
- 3. Canonicity proved, assuming the guard checker exists.

First Contribution: an issue in the current setup

1. Assume a guard checker (function)

- 1. Assume a guard checker (function)
- 2. Define typing relation + 1-step reduction relation

- 1. Assume a guard checker (function)
- 2. Define typing relation + 1-step reduction relation
- 3. Assume Strong Normalization

- 1. Assume a guard checker (function)
- 2. Define typing relation + 1-step reduction relation
- 3. Assume Strong Normalization
- 4. Define reduction function (and show it respects the reduction relation)

- 1. Assume a guard checker (function)
- 2. Define typing relation + 1-step reduction relation
- 3. Assume Strong Normalization
- 4. Define reduction function (and show it respects the reduction relation)
- 5. Define a guard checker that replaces 1...?

- 1. Assume a guard checker (function)
- 2. Define typing relation + 1-step reduction relation
- 3. Assume Strong Normalization
- 4. Define reduction function (and show it respects the reduction relation)
- 5. Define a guard checker that replaces 1...?

Circular dependency! Any way to break the loop?

1. Define guard condition (predicate)

- 1. Define guard condition (predicate)
- 2. Define typing relation + 1-step reduction relation

- 1. Define guard condition (predicate)
- 2. Define typing relation + 1-step reduction relation
- 3. Assume Strong Normalization

- 1. Define guard condition (predicate)
- 2. Define typing relation + 1-step reduction relation
- 3. Assume Strong Normalization
- 4. Define reduction function (and show it respects the reduction relation)

- 1. Define guard condition (predicate)
- 2. Define typing relation + 1-step reduction relation
- 3. Assume Strong Normalization
- 4. Define reduction function (and show it respects the reduction relation)
- 5. Define guard checker (and show it respects the guard condition)

No more circular dependency!

Plan for Current Work

Do bullet points 1 (define guard predicate) and 5 (port guard checker to Coq) concurrently.

Faithful to current OCaml implementation.

Future work

- $\cdot\,$ Move trust to a new guard condition that
 - is simpler to understand, thus easier to trust, and
 - implies the old guard condition.

Old Guard Condition $\stackrel{\rm reduces}{\longrightarrow}$ New Guard Condition

by doing a (verified) translation.

• Ideally, Coq's guard checker will be extracted from a verified implementation in MetaCoq.

We have seen today

- Three ingredients to prove consistency:
 - 1. Strong Normalization (Guard Condition!)
 - 2. Subject Reduction
 - 3. Canonicity
- Inductive types; eliminators vs fixpoints (and danger)
- Introduction to MetaCoq
- "First predicate, then function"

We have seen today

- Three ingredients to prove consistency:
 - 1. Strong Normalization (Guard Condition!)
 - 2. Subject Reduction
 - 3. Canonicity
- Inductive types; eliminators vs fixpoints (and danger)
- Introduction to MetaCoq
- "First predicate, then function"

Thank you! Questions?