Towards Formalizing the Guard Condition of Coqg

Yee-Jian Tan

MPRI M1 Internship Project
Advisor: Yannick Forster, Cambium team

Goal for Today

1. Consistency of a Type Theory
2. Coqg’'s Guard Checker

3. Towards a Formalization

Consistency of a Type Theory

Three ingredients for consistency

Consistency of a Type Theory

1. Strong normalization: reduction terminates and every term has a unique normal form.
2. Subject reduction: reduction preserves typing.

3. Canonicity: normal form of terms in the empty context must begin with a constructor.

Together, we can prove consistency:

Proof of Consistency

Any term of the Empty type has a normal form (1) of the same type (2), which, in the empty
context, must begin with a constructor (3). But the type False has no constructor.

Inductive Types in Coq: Constructors

We want to show Coq’s consistency with the same scheme.

Inductive types in Coq:

Inductive nat :=
| 0 : nat
| S : nat = nat.

Inductive list (A : Set) :=
| nil : list A
| cons : A = list A - list A.

Inductive vec (A : Set) : nat = Set :=

| vnil :vec A O
| vcons (n : nat) : A = vec An = vec A (S n).

Which are defined using constructors.

Inductive Types in Coq: Constructors

More examples:

Inductive Acc (A : Set) (R : A= A — Prop) (a : A) : Prop :=
| acc : (forall b : A, (Rba—=>Acc ARD)) = Acc AR a.

Inductive rtree :=
| node : list rtree (* nested *) = rtree.

Inductive rtree' :=
| node' : list_rtree — rtree'
with list_rtree :=
| rtree_nil : list_rtree
| rtree_cons : rtree' — list_rtree — list_rtree.

We can also have nested and/or mutual inductive types.

Inductive Types in Coq: Eliminators

The dual of a constructor is an eliminator, whose type is known as the induction principle.

About nat_rec.
(** nat_rec : forall P : nat — Set,
PO — (forall n : nat, Pn —=> P (Sn)) = forall n : nat, P n
*
)
About list_rec.
(** list_rec : forall (A : Set) (P : list A — Set),
P (nil A) —
(forall (a : A) (1 : 1ist A), P1 > P (cons Aal)) —
forall 1 : list A, P 1
*)
About vec_rec.
(** vec_rec: forall (A : Set) (P : forall n : nat, vec A n = Set),
PO (vnil A) =
(forall (n : nat) (a: A) (v:vecAn),Pnv—>P(Sn) (vcons Anav) —>
forall (n : nat) (v : vec An), Pnv
*
)

Eliminators vs Match

Coqg was designed to extract to OCaml, so match operators are used instead of eliminators.

Eliminators can be defined using match and fixpoints.

About nat_rec.
(** nat_rec : forall P : nat — Set,
PO — (forall n : nat, Pn =P (Sn)) = forall n : nat, P n

*)

Fixpoint nat_rec (P : nat — Set)
(p@ : P 0O) (ps : forall (m: nat), Pm =P (Sm)) (n: nat) : P n :=
match n with
| 0 = po
| Sm = ps m (nat_rec P pB ps m)
end.
End M.

Eliminators vs Case

For example, the plus operation on N in both styles:

Definition plus_elim (a b : nat) := nat_rec (fun _ = nat) b (fun _ p = S p) a.

Fixpoint plus (a b : nat) {struct a} := match a with 0 = b | S a' = S (plus a' b) end.

which are equivalent.

Theorem plus_equiv : forall (a b : nat), plus a b = plus_elim a b.
Proof.

induction a as [|a Ha].

- simpl. reflexivity.

- cbn. intro b. f_equal. exact (Ha b).
Qed.

Fixpoints in Coq

However, non-terminating fixpoints can break strong normalization!

Fixpoint plus' (a b : nat) {struct a} := match a with
| 0 =D

| S _ = S (plus' a b)

end.

10

Fixpoints in Coq

However, non-terminating fixpoints can break strong normalization!

Fixpoint plus' (a b : nat) {struct a} := match a with
| 0 =D
| S _ = S (plus' a b)

end.

Definition one := plus' (S 0) 0.
Theorem one_equals_two : one = S one.
Proof. unfold one at 1. rewrite alt. rewrite < alt. unfold id. apply f_equal. symmetry. reflexivity. Qed.

Theorem n_not_succ_n: forall (n : nat), n =S n — False.
Proof. induction n as [|n Hn]; intro H; now inversion H. Qed.

Goal False. exact (n_not_succ_n one one_equals_two). Qed.

10

Fixpoints in Coq

However, non-terminating fixpoints can break strong normalization!

Fixpoint plus' (a b : nat) {struct a} := match a with
| 0 =D
| S _ = S (plus' a b)

end.

Definition one := plus' (S 0) 0.
Theorem one_equals_two : one = S one.
Proof. unfold one at 1. rewrite alt. rewrite < alt. unfold id. apply f_equal. symmetry. reflexivity. Qed.

Theorem n_not_succ_n: forall (n : nat), n =S n — False.
Proof. induction n as [|n Hn]; intro H; now inversion H. Qed.

Goal False. exact (n_not_succ_n one one_equals_two). Qed.

10

Fixpoints in Coq

However, non-terminating fixpoints can break strong normalization!

Fixpoint plus' (a b : nat) {struct a} := match a with
| 0 =D
| S _ = S (plus' a b)

end.

Definition one := plus' (S 0) 0.
Theorem one_equals_two : one = S one.
Proof. unfold one at 1. rewrite alt. rewrite < alt. unfold id. apply f_equal. symmetry. reflexivity. Qed.

Theorem n_not_succ_n: forall (n : nat), n =S n — False.
Proof. induction n as [|n Hn]; intro H; now inversion H. Qed.

Goal False. exact (n_not_succ_n one one_equals_two). Qed.

10

Fixpoints in Coq

However, non-terminating fixpoints can break strong normalization!

Fixpoint plus' (a b : nat) {struct a} := match a with
| 0 =D
| S _ = S (plus' a b)

end.

Definition one := plus' (S 0) 0.
Theorem one_equals_two : one = S one.
Proof. unfold one at 1. rewrite alt. rewrite < alt. unfold id. apply f_equal. symmetry. reflexivity. Qed.

Theorem n_not_succ_n: forall (n : nat), n =S n — False.
Proof. induction n as [|n Hn]; intro H; now inversion H. Qed.

Goal False. exact (n_not_succ_n one one_equals_two). Qed.

... and consistency!

10

Coq’'s Guard Checker

Coq’s guard checker

- sufficient condition for termination
- based on a syntactical check for structural recursion
- the condition it imposes is known as the guard condition.

In short: it checks that the recursive argument is structurally smaller.

Fixpoint plus (a b : nat) {struct a} := match a with 0 = b | S a' = S (plus a' b) end.

Other guard conditions

- well-foundedness in Program Fixpoint
- sized types in Agda

- type-based conditions

12

Coq’s guard checker

An oversimplification of how the guardchecker works:

Fixpoint f (n : nat) := match n with
(* strict subterms of n : [] *)
| 0 =0
| S nl = (* strict subterms of n : [n1] *)

match n1 with (* strict subterms of n : [n1, n2] *)
| 0 = n1l

| Sn2 = ((fun x = x) f) nl
end

end.

- Internally, the subterms are deduced from a (regular) tree representing nat.
- In real life: mutual, nested inductive types (and fixpoints) that complicate matter...

13

Is that the end of the story?

Of course not! Many things happened since the guard checker’s birth.
- remains crucial for the correctness of Coq
- at the heart of multiple consistency-threatening bugs.

- bugfixes and optimizations — about 1k LOC of OCaml (2k including data structures)

14

Coq’s Guard Checker: a Timeline

Many others have contributed to the guard checker, sorry if | missed your names!

1990s

- Eduardo Gimenez : “Codifying Recursive Definitions with Recursive Schemes”.
- Christine Paulin-Mohring : Inductive types in Coq.

2000s

- Bruno Barras : first commit of the Guard Checker in Coq by Bruno Barras.

2010s
- Pierre Boutiller : relaxation of the guard condition via B -t cuts
- Maxime Denes : Propositional Extensionality bug + fixes

2020s
- Hugo Herbelin : restored strong normalization, extracted uniform parameters, ...

15

Towards a Formalization

Why understand the Guard Checker of Coq?

User POV

Fighting the guard checker is common in formalization projects. We need an accurate under-
standing of It.

Theoretical POV
We want to know that Coq’'s metatheory is consistent.

Immediate Goals
- Understand the guard checker and produce a specification/paper/document

- Lay the groundwork for formalization: we do it in MetaCoq.

17

Introduction to MetaCoq

Definition: implementation details

Distinction must be made between

Guard Condition

A predicate on whether a term is guarded.

Inductive Guard ¥ I : term = Prop :=

| Guard_tFix (f : tFix) : "f is structurally recursive" — Guard L I f
| ... end.

Guard Checker

Guard Checker: a function that computes/decides the guardedness of a term.

Definition guard T Y t A = (I ; T F t : A) = Bool.
Theorem guard_ok := guard t = true iff Guard t.

19

Guard Condition in MetaCoq: Current State

Did MetaCoq prove consistency? Not yet, but there is hope. See Meven'’s talk later!

3 ingredients:

1. Strong normalization -
2. Subject reduction -

3. Canonicity -

20

Guard Condition in MetaCoq: Current State

Did MetaCoq prove consistency? Not yet, but there is hope. See Meven'’s talk later!

3 ingredients:
1. Strong normalization - postulated. Requires a notion of guardedness.

2. Subject reduction -
3. Canonicity -

20

Guard Condition in MetaCoq: Current State

Did MetaCoq prove consistency? Not yet, but there is hope. See Meven'’s talk later!

3 ingredients:
1. Strong normalization - postulated. Requires a notion of guardedness.

2. Subject reduction - proved, assuming the guard checker exists.
3. Canonicity -

20

Guard Condition in MetaCoq: Current State

Did MetaCoq prove consistency? Not yet, but there is hope. See Meven'’s talk later!

3 ingredients:
1. Strong normalization - postulated. Requires a notion of guardedness.

2. Subject reduction - proved, assuming the guard checker exists.
3. Canonicity - proved, assuming the guard checker exists.

20

First Contribution: an issue in the current setup

The Wrong Way to Guard Check

The current order of proofs:

22

The Wrong Way to Guard Check

The current order of proofs:

1. Assume a guard checker (function)

22

The Wrong Way to Guard Check

The current order of proofs:

1. Assume a guard checker (function)
2. Define typing relation + 1-step reduction relation

22

The Wrong Way to Guard Check

The current order of proofs:

1. Assume a guard checker (function)
2. Define typing relation + 1-step reduction relation
3. Assume Strong Normalization

22

The Wrong Way to Guard Check

The current order of proofs:

1. Assume a guard checker (function)

2. Define typing relation + 1-step reduction relation

3. Assume Strong Normalization

4. Define reduction function (and show it respects the reduction relation)

22

The Wrong Way to Guard Check

The current order of proofs:

Pl gE G N =

Assume a guard checker (function)

Define typing relation + 1-step reduction relation

Assume Strong Normalization

Define reduction function (and show it respects the reduction relation)
Define a guard checker that replaces 1...7

22

The Wrong Way to Guard Check

The current order of proofs:

Assume a guard checker (function)

Define typing relation + 1-step reduction relation

Assume Strong Normalization

Define reduction function (and show it respects the reduction relation)
Define a guard checker that replaces 1...7

Pl gE G N =

Circular dependency! Any way to break the loop?

22

The Correct Way to Guard Check

The correct order of proofs:

1. Define guard condition (predicate)

23

The Correct Way to Guard Check

The correct order of proofs:

1. Define guard condition (predicate)
2. Define typing relation + 1-step reduction relation

23

The Correct Way to Guard Check

The correct order of proofs:

1. Define guard condition (predicate)
2. Define typing relation + 1-step reduction relation
3. Assume Strong Normalization

23

The Correct Way to Guard Check

The correct order of proofs:

1. Define guard condition (predicate)

2. Define typing relation + 1-step reduction relation

3. Assume Strong Normalization

4. Define reduction function (and show it respects the reduction relation)

23

The Correct Way to Guard Check

The correct order of proofs:

Define guard condition (predicate)

Define typing relation + 1-step reduction relation

Assume Strong Normalization

Define reduction function (and show it respects the reduction relation)
Define guard checker (and show it respects the guard condition)

SR LN =

No more circular dependency!

23

Plan and Future Work

Plan for Current Work
Do bullet points 1 (define guard predicate) and 5 (port guard checker to Coq) concurrently.

Faithful to current OCaml implementation.

Future work
- Move trust to a new guard condition that

» IS simpler to understand, thus easier to trust, and
» Implies the old guard condition.

Old Guard Condition Sl New Guard Condition

by doing a (verified) translation.

- Ideally, Coqg's guard checker will be extracted from a verified implementation in MetaCogq.

24

Conclusion

We have seen today

- Three ingredients to prove consistency:

1. Strong Normalization (Guard Condition!)
2. Subject Reduction
3. Canonicity

- Inductive types; eliminators vs fixpoints (and danger)

- Introduction to MetaCoqg

- “First predicate, then function”

25

Conclusion

We have seen today

- Three ingredients to prove consistency:

1. Strong Normalization (Guard Condition!)
2. Subject Reduction
3. Canonicity

- Inductive types; eliminators vs fixpoints (and danger)
- Introduction to MetaCoqg

- “First predicate, then function”

Thank you! Questions?

25

	Consistency of a Type Theory
	Other guard conditions

	1990s
	2000s
	2010s
	2020s
	User POV
	Theoretical POV
	Immediate Goals
	Plan for Current Work
	Future work

	Thank you! Questions?

